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Abstract

A simply supported Euler–Bernoulli beam with an intermediate support is considered. Non-linear terms
due to immovable end conditions leading to stretching of the beam are included in the equations of motion.
The concept of non-ideal boundary conditions is applied to the beam problem. In accordance, the
intermediate support is assumed to allow small deflections. An approximate analytical solution of the
problem is found using the method of multiple scales, a perturbation technique. Ideal and non-ideal
frequencies as well as frequency-response curves are contrasted.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Beams are frequently used as design models. The types of support have direct influence on the
vibrations of beams. Different support conditions are defined (simple, built-in, guided, free, etc.)
and the requirements associated with such supports are stated. In real system applications, usually
the support type that resembles best the behaviour is selected. However, real system behaviour
may deviate from the idealized support conditions. If the beam is simply supported, the ideal
conditions require deflections and moments to be zero at the supports. In reality, however small
deviations from the ideal conditions indeed occur. A pinned joint is modelled as a simple support.
If the pin-hole assembly is not tightly fixed and if there is some friction, small deflections as well as
moments occur which makes deviations from the ideal conditions. This idea can be applied in a
similar way to other support conditions such as built-in, guided, free, etc. To represent such
behaviour, a non-ideal boundary condition concept has been recently proposed [1,2].
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Non-ideal boundary conditions are modelled using perturbations. In the pioneering work [1],
linear beam problems of different support conditions and an axially moving string problem has
been treated. A non-linear beam problem with stretching has also been considered [2]. Here, in
this work, the forced damped case with a non-ideal simple support at an intermediate point is
considered further. Ideal and non-ideal frequencies as well as frequency-response curves are
contrasted. The effect of a loose intermediate support is analyzed here together with the non-
linear effects. As a general rule, the loose support causes odd numbered frequencies to increase,
while the effect is reverse for the even numbered frequencies. This general rule does not apply to
degenerate frequencies as defined in the text. The non-ideality causes a shift in the frequency-
response curves also. By shifting the frequency-response curve, a system under resonance may be
brought to a safer operating condition.

2. Problem formulation and solution

The simple–simple Euler–Bernoulli beam considered here has a simple support at an
intermediate point at x ¼ Z (0oZo1), where x is the spatial co-ordinate (See Fig. 1). The
equations of motion and the boundary conditions are (see Ref. [3] for the derivation of equations
in a similar case of beam–mass problem)

.w1 þ wiv
1 ¼

1

2

Z Z

0

w0
12 dx þ

Z 1

Z
w0
22 dx

� �
w00
1 � 2 %m ’w1 þ %F1 cosOt;

.w2 þ wiv
2 ¼

1

2

Z Z

0

w0
12 dx þ

Z 1

Z
w0
22 dx

� �
w00
2 � 2 %m ’w2 þ %F2 cosOt; ð1; 2Þ

w1ð0; tÞ ¼ w00
1ð0; tÞ ¼ w2ð1; tÞ ¼ w00

2ð1; tÞ ¼ 0;

w1ðZ; tÞ ¼ w2ðZ; tÞ ¼ e
ffiffi
e

p
aðtÞ; w0

1ðZ; tÞ ¼ w0
2ðZ; tÞ;

w00
1ðZ; tÞ ¼ w00

2ðZ; tÞ; ð3Þ

where w1 is the left side deflection and w2 is the right side deflection, t is the time variable, %m is
the damping coefficient and, %Fi and O are the magnitudes and the frequency of the external
excitation respectively. ( � ) denotes derivation with respect to time variable t and ( )0 denotes
derivation with respect to spatial variable x. e is a small perturbation parameter. All variables are
dimensionless. The relation between the dimensional (denoted by *) and dimensionless quantities
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Fig. 1. A simply supported beam of immovable end conditions with a non-ideal simple support in between.
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are as follows:

x ¼
x�
L
; wi ¼

wi�
r
; Z ¼

xs

L
; t ¼

1

L2

ffiffiffiffiffiffiffi
EI

rA

s
t�;

O ¼
O � L2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p ; %Fi ¼
Fi�
EIr

; 2 %m ¼
m � L2ffiffiffiffiffiffiffiffiffiffiffiffi
rAEI

p ; ð4Þ

where L is the length, r is the density, A is the cross-sectional area, E is the Young’s modulus, I is
the moment of inertia, r is the radius of gyration of the beam cross-section and xs is the location of
the intermediate support. Here, small deflections at the intermediate point Z are permitted to
indicate deviations from the ideal boundary condition.
Before proceeding further, deflection term wi and the magnitude of the external excitation %Fi are

scaled as

wi ¼
ffiffi
e

p
ui; %Fi ¼

ffiffi
e

p
#Fi; ð5Þ

for appropriate ordering of the terms. Eqs. (1)–(3) are rewritten in the new variable u as follows:

.u1 þ uiv
1 ¼

1

2
e
Z Z

0

u0
12þ

Z 1

Z
u0
22

� �
u00
1 � 2 %m ’u1 þ #F1 cosOt;

.u2 þ uiv
2 ¼

1

2
e
Z Z

0

u0
12þ

Z 1

Z
u0
22

� �
u00
2 � 2 %m ’u2 þ #F2 cosOt; ð6; 7Þ

u1ð0; tÞ ¼ u00
1ð0; tÞ ¼ u2ð1; tÞ ¼ u00

2ð1; tÞ ¼ 0;

u1ðZ; tÞ ¼ u2ðZ; tÞ ¼ eaðtÞ; u0
1ðZ; tÞ ¼ u02ðZ; tÞ;

u00
1ðZ; tÞ ¼ u00

2ðZ; tÞ: ð8Þ

Now, approximate solutions of Eqs. (6) and (7) with associated boundary conditions (8) are
sought. The method of multiple scales (a perturbation technique) [4] is applied directly to the
partial differential system and boundary conditions. Expansions are assumed of the forms

u1ðx; t; eÞ ¼ u11ðx;T0;T1Þ þ eu12ðx;T0;T1Þ;þ?;

u2ðx; t; eÞ ¼ u21ðx;T0;T1Þ þ eu22ðx;T0;T1Þ þ?; ð9; 10Þ

where T0 ¼ t is the fast time scale and T1 ¼ et is the slow time scale. Only the primary resonance
case is considered and hence, the forcing and damping terms are ordered as

%m ¼ em; #Fi ¼ eFi; ð11Þ

The time derivatives are expressed in the new time scales

ðdÞ ¼ D0 þ eD1; ðddÞ ¼ D2
0 þ 2eD0D1; Dn ¼ q=qTn: ð12Þ

Inserting Eqs. (9)–(12) into Eqs. (6)–(8) and equating coefficients of like powers of e; one
obtains, at order 1,

D2
0u11 þ uiv

11 ¼ 0; D2
0u21 þ uiv

21 ¼ 0; ð13; 14Þ
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u11ð0;T0;T1Þ ¼ u00
11ð0;T0;T1Þ ¼ u21ð1;T0;T1Þ ¼ u00

21ð1;T0;T1Þ ¼ 0;

u11ðZ;T0;T1Þ ¼ u21ðZ;T0;T1Þ ¼ 0; u011ðZ;T0;T1Þ ¼ u021ðZ;T0;T1Þ;

u00
11ðZ;T0;T1Þ ¼ u00

21ðZ;T0;T1Þ; ð15Þ

and at order e;

D2
0u12 þ uiv

12 ¼ �2D0D1u11 þ
1

2

Z Z

0

u0
112 dx þ

Z 1

Z
u0212 dx

� �
u0011 � 2mD0u11 þ F1 cosOT0;

D2
0u22 þ uiv

22 ¼ �2D0D1u21 þ
1

2

Z Z

0

u0
112 dx þ

Z 1

Z
u0212 dx

� �
u0021 � 2mD0u21 þ F2 cosOT0; ð16; 17Þ

u12ð0;T0;T1Þ ¼ u00
12ð0;T0;T1Þ ¼ u22ð1;T0;T1Þ ¼ u00

22ð1;T0;T1Þ ¼ 0;

u12ðZ;T0;T1Þ ¼ u22ðZ;T0;T1Þ ¼ aðT0;T1Þ;

u0
12ðZ;T0;T1Þ ¼ u0

22ðZ;T0;T1Þ; u0012ðZ;T0;T1Þ ¼ u0022ðZ;T0;T1Þ: ð18Þ

At order 1, solutions of the form

u11 ¼ ðAðT1ÞeioT0 þ ccÞY1ðxÞ; u21 ¼ ðAðT1ÞeioT0 þ ccÞY2ðxÞ ð19; 20Þ

is assumed, where cc stands for the complex conjugate of the preceding terms. Substituting
Eqs. (19) and (20) into Eqs. (13)–(15), one has

Y iv
1 � o2Y1 ¼ 0; Y iv

2 � o2Y2 ¼ 0; ð21; 22Þ

Y1ð0Þ ¼ Y 00
1 ð0Þ ¼ Y2ð1Þ ¼ Y 00

2 ð1Þ ¼ 0;

Y1ðZÞ ¼ Y2ðZÞ ¼ 0 Y 0
1ðZÞ ¼ Y 0

2ðZÞ Y 00
1 ðZÞ ¼ Y 00

2 ðZÞ: ð23Þ

Solving Eqs. (21)–(23) exactly yields the mode shapes,

Y1ðxÞ ¼ C sin bð1� ZÞ sin bx �
sin bZ
sinh bZ

sinh bx

� �
;

Y2ðxÞ ¼ C sin bZ sin bð1� xÞ �
sin bð1� ZÞ
sinh bð1� ZÞ

sinh bð1� xÞ
� �

; ð24; 25Þ

and the natural frequencies o satisfy the transcendental equation

sin bZ sinh bZ cos bð1� ZÞsinh bð1� ZÞ � sin bð1� ZÞcosh bð1� ZÞ½ 


þ sin bð1� ZÞsinh bð1� ZÞ cos bZ sinh bZ� sin bZ cosh bZ½ 
 ¼ 0; ð26Þ

where

b ¼
ffiffiffiffi
o

p
: ð27Þ

Eq. (26) is solved numerically for the first seven modes and results are given in Table 1 for
different Z values. Due to the symmetry of the problem, results are given up to Z ¼ 0:5: Inspecting
Eq. (26), one finds that for some specific b values sin bZ and sin bð1� ZÞ both vanish, and for
those degenerate cases the mode shapes take the simpler form

Y1ðxÞ ¼ C sin bx; Y2ðxÞ ¼ �C sin bð1� xÞ: ð28; 29Þ
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Because the homogeneous equations (13)–(15) have a non-trivial solution, the non-homogeneous
problem (16)–(18) will have a solution only if a solvability condition [4] is satisfied. To determine
this condition, the secular and non-secular terms are separated by assuming a solution of the form

u12 ¼ j1ðx;T1Þe
ioT0 þ W1ðx;T0;T1Þ þ cc;

u22 ¼ j2ðx;T1Þe
ioT0 þ W2ðx;T0;T1Þ þ cc: ð30; 31Þ

Substituting this solution into Eqs. (16)–(18), secular and non-secular terms separate (for this
order, only the secular ones are of interest):

jiv
1 � o2j1 ¼ �2ioD1AY1 þ

3

2
A2 %A

Z Z

0

Y 0
12 dx þ

Z 1

Z
Y 0
22 dx

� �
Y 00
1 � 2mioAY1 þ

F1

2
eisT1 ;

jiv
2 � o2j2 ¼ �2ioD1AY2 þ

3

2
A2 %A

Z Z

0

Y 0
12 dx þ

Z 1

Z
Y 0
22 dx

� �
Y 00
2 � 2mioAY2 þ

F2

2
eisT1 : ð32; 33Þ

In obtaining these equations, the order 1 solutions (19) and (20) are substituted into
Eqs. (16)–(18). It is also assumed that the external excitation frequency is close to one of the
natural frequencies of the system; such that

O ¼ oþ es: ð34Þ

Here s is a detuning parameter of order 1. After algebraic manipulations, the solvability
conditions for Eqs. (32) and (33) are obtained

2ioðD1A þ mAÞ þ
3

2
b2A2 %A þ kAðY 000

2 ðZÞ � Y 000
1 ðZÞÞ �

1

2
f eisT1 ¼ 0; ð35Þ

where

f ¼
Z Z

0

F1Y1 dx þ
Z 1

Z
F2Y2 dx; ð36Þ

and

b ¼
Z Z

0

Y 0
12 dx þ

Z 1

Z
Y 0
22 dx: ð37Þ

In obtaining Eq. (35) the normalization condition
R Z
0 Y 2

1 dx þ
R 1
Z Y 2

2 dx ¼ 1 is employed. The
amplitude of the deflection allowed at the intermediate point is assumed to be of the same form as
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Table 1

b values for different support locations (Z)

Z b1 b2 b3 b4 b5 b6 b7

0.1 4.2264 7.6313 11.0505 14.4793 17.9123 21.3435 24.7626

0.2 4.6183 8.3915 12.1617 15.7080 17.8725 20.4610 24.1149

0.3 5.1318 9.2769 11.7804 14.2845 18.4048 21.7675 23.5619

0.4 5.7826 8.7679 11.3129 15.7080 17.3296 21.4939 24.4763

0.5 6.2832 7.8532 12.5664 14.1372 18.8496 20.4204 25.1327
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that of order 1 solution, namely

aðT0;T1Þ ¼ kAðT1ÞeioT0 þ cc; ð38Þ

where k is an arbitrary constant of order 1. Eq. (35) determines the modulations in the complex
amplitudes. The polar form

A ¼
1

2
aðT1ÞeiyðT1Þ ð39Þ

is to be used to calculate real amplitudes and phases. After separating real and imaginary parts,
one obtains

oa0 ¼ �moa þ
1

2
f sin g;

oag0 ¼ oas�
3

16
b2a3 � Ka þ

1

2
f cos g; ð40; 41Þ

where g and K are defined as

g ¼ sT1 � y;

K ¼
k

2
Y 000
2 ðZÞ � Y 000

1 ðZÞ

 �

: ð42Þ

In the steady state case, a0 ¼ g0 ¼ 0 and solving for the detuning parameter yields

s ¼
K

o
þ

3

16o
b2a27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

4o2a2
� m2

s
: ð43Þ

For free undamped vibrations, non-ideal non-linear natural frequencies are

oni ¼ oþ e
3

16o
b2a2 þ

K

o

� �
: ð44Þ

In the above relation, the first term in OðeÞ is due to the non-linearity and the second term is due
to the non-ideal boundary condition. If b ¼ 0 is taken, non-ideality effects will be isolated. Non-
ideal and ideal frequencies are contrasted in Table 2 for the first five frequencies and for different
location parameters.
As a general rule, intermediate non-ideal boundary condition causes a decrease in odd

numbered frequencies and an increase in even numbered frequencies. However this general rule
ceases to be valid for degenerate roots. Degenerate b values are defined previously as the values
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Table 2

Ideal and non-ideal natural frequencies (ek=2 ¼ 0:1)

Z o1i o1ni o2i o2ni o3i o3ni o4i o4ni o5i o5ni

0.1 17.8622 15.1822 58.2367 61.4112 122.1138 118.4668 209.6487 213.7117 320.8512 316.4768

0.2 21.3289 19.5473 70.418 72.6689 147.9077 145.6414 246.7401 242.2972 319.4266 312.1935

0.3 26.3352 24.7986 86.0614 87.2882 138.7773 134.8397 204.0458 208.9341 338.7358 335.0162

0.4 33.4385 32.1416 76.8753 79.3723 127.9821 124.2754 246.7401 251.183 300.3159 293.3388

0.5 39.4784 39.4784 61.6728 64.8165 157.9137 157.9137 199.8594 205.5143 355.3058 355.3058
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which causes sin bZ and sin bð1� ZÞ both vanish. The degenerate values (o ¼ b2) in Table 2 are
fourth frequencies for Z ¼ 0:2 and 0.4, odd frequencies for Z ¼ 0:5: A centered non-ideal support
does not change the odd frequencies since there is a node at this location for these frequencies. For
Z ¼ 0:4; the fourth frequency does not violate the general rule, i.e., increase for even modes.
However, the general rule is violated for the fourth frequency of Z ¼ 0:2:
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Fig. 2. Non-linear frequencies versus amplitudes for ideal (dotted) and non-ideal (solid) cases: (a) first mode (Z ¼ 0:2);
(b) second mode (Z ¼ 0:2).
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In Fig. 2a fundamental non-linear frequencies versus amplitudes are contrasted for the ideal
and non-ideal cases for Z ¼ 0:2 . The second mode comparison is given in Fig. 2b for the same Z
value (location parameter). In Figs. 3a and b, the first and second modes of amplitude-dependent
vibration frequencies are contrasted for Z ¼ 0:4:
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Fig. 3. Non-linear frequencies versus amplitudes for ideal (dotted) and non-ideal (solid) cases: (a) first mode (Z ¼ 0:4);
(b) second mode (Z ¼ 0:4).
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One can also obtain amplitude-excitation frequency relation from Eqs. (43) and (34)

O ¼ oþ e
3

16o
b2a2 þ e

K

o
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2f 2

4o2a2
� ðemÞ2

s
: ð45Þ
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Fig. 4. Frequency-response curves for ideal (dotted) and non-ideal (solid) cases: (a) first mode (Z ¼ 0:2, em ¼ 0:01;
ek=2 ¼ 0:1 and ef ¼ 1); (b) second mode (Z ¼ 0:2, em ¼ 0:01; ek=2 ¼ 0:1 and ef ¼ 1).
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In Fig. 4a, frequency-response graphs for the first modes are compared for the ideal and non-
ideal cases for Z ¼ 0:2, em ¼ 0:01; ek=2 ¼ 0:1 and ef ¼ 1: In Fig. 4b the second modes are
contrasted for the same parameter values. In Figs. 5a and b the first and second modes are
contrasted for Z ¼ 0:4, and all other parameters remaining the same. The non-ideal frequencies
may increase, decrease or remain unchanged depending on the position parameter Z and number
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Fig. 5. Frequency-response curves for ideal (dotted) and non-ideal (solid) cases: (a) first mode (Z ¼ 0:4; em ¼ 0:01;
ek=2 ¼ 0:1 and ef ¼ 1); (b) second mode (Z ¼ 0:4, em ¼ 0:01; ek=2 ¼ 0:1 and ef ¼ 1).
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of modes. The non-ideality causes a negative, positive or zero drift in the frequency-response
curves depending on the location and mode numbers.
The approximate beam deflections to the first order are as follows:

w1 ¼
ffiffi
e

p
½a cosðOt � gÞY1ðxÞ þ OðeÞ
;

w2 ¼
ffiffi
e

p
½a cosðOt � gÞY2ðxÞ þ OðeÞ
; ð46; 47Þ

where Y1ðxÞ and Y2ðxÞ are given in Eqs. (24,25) or Eqs. (28,29).

3. Concluding remarks

Non-ideal boundary conditions are defined and formulated using perturbation theory. A simply
supported beam with a non-ideal simple support at an intermediate point is treated. Non-linear
terms are introduced because of the immovable end conditions leading to beam stretching.
Approximate analytical solution of the problem is presented using the method of multiple scales.
Ideal and non-ideal non-linear natural frequencies are given for different intermediate support
locations. Depending on the mode numbers and locations, the frequencies may increase, decrease
or remain unchanged. Deviations from the ideal conditions lead to a drift in frequency-response
curves which may be positive, negative or zero depending on the mode number and location.
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